A Co-Clustering approach for Sum-Product Network Structure Learning

Antonio Vergari
Nicola Di Mauro
Floriana Esposito

December 8, 2014
Outline

- Introducing **Sum-Product Networks (SPNs)**
 - definition and *properties*
 - inference

- **Learning the structure** of SPNs
 - current state of the art
 - affinities with *hierarchical co-clustering*
 - sketching a proposal

- Experimentation
 - experimental setting
 - results

- Further Works and Conclusions
Probabilistic Graphical Models

They can compactly represent joint probability distributions...

...but inference is potentially intractable, *exponential in the treewidth*. One of the bottlenecks is the computation of the *partition function*:

\[
Z = \sum_{x \sim X} \prod_{C \in \mathcal{C}} \phi_C(x_C)
\]
Sum-Product Networks

A tractable distribution is an SPN.

A tractable distribution is an SPN.
A product of SPNs over different scopes is an SPN (*decomposability*).

Sum-Product Networks

A tractable distribution is an SPN.

A product of SPNs over different scopes is an SPN (*decomposability*).

A weighted sum (*w*₂ ≥ 0) of SPN over the same scope is an SPN (*completeness*).

Nothing else is an SPN.

Sum-Product Networks

A tractable distribution is an SPN. A product of SPNs over different scopes is an SPN (*decomposability*). A weighted sum \((w_i \geq 0) \) of SPN over the same scope is an SPN (*completeness*). Nothing else is an SPN. They compactly encode the *network polynomial* over \(\mathbf{X} \) (multilinear function).

Inference

Given an SPN S over r.v.s \mathbf{X}, these measures are computable in time linear to $|\text{edges}(S)|$:

- the partition function of the distribution over \mathbf{X}:
 \[Z = S(\ast) \]

- exact marginal probabilities for an evidence e:
 \[Pr(e) = \frac{S(e)}{S(\ast)} \]

- MPE probability for an evidence e and query q (converting S into S^{\max} by replacing sum nodes with max nodes)
 \[\text{MPE}(q, e) = \max_q Pr(q, e) = S^{\max}(e) \]
Inference (example)

To compute the *marginal* probability $Pr(X) = \sum_{y \sim Y} Pr(X, y)$:

![Diagram representing the computation of marginal probability in a sum-product network]
Inference (example)

To compute the *marginal* probability $Pr(X) = \sum_{y \sim Y} Pr(X, y)$:

- Set the leaf values for X and marginalize over Y by setting their probabilities to 1.
Inference (example)

To compute the *marginal* probability \(Pr(X) = \sum_{y \sim Y} Pr(X, y) \):

- Set the leaf values for \(X \) and marginalize over \(Y \) by setting their probabilities to 1
- Propagate probabilities (computing sums and products *bottom-up*)
Inference (example)

To compute the *marginal* probability $Pr(X) = \sum_{y \sim Y} Pr(X, y)$:

- Set the leaf values for X and marginalize over Y by setting their probabilities to 1.
- Propagate probabilities (computing sums and products *bottom-up*).
- The exact values is the root value.
Deep Architectures

Exploit *local interactions* to save computations by layering a *deep architecture*.

Learning a compact structure equals to discover these interactions.
Structure Learning

Building the network *top down* or *bottom up* by clustering features and/or instances:

- **KMeans** on features ($k = 2$, euclidean distance) to discover similarities, adding layers of sum nodes (fixed length, fully connected) [Dennis and Ventura 2012]

- Merging feature regions bottom-up by a **Bayesian-Dirichlet independence test**, adding sum layers (fixed length) and reducing edges by maximizing Mutual Information (Information Bottleneck) [Peharz, Geiger, and Pernkopf 2013]

- LearnSPN: alternating **splitting** instances (clustering by similarity) and features (independence checking) in a **greedy way**.
 Builds a *tree-like* SPN with univariate distributions at the leaves estimated from data [Gens and Domingos 2013]
LearnSPN

Build a tree-like SPN that maximizes the log-likelihood of the data by alternating splits on instances and features.

Online Hard-EM with restarts to cluster instances T with an exp prior ($Pr(C_i) \propto e^{-\lambda |C_i| \cdot |X|}$) on clusters to avoid overfitting:

$$
Pr(X) = \sum_{C_i \in C} \prod_{X_j \in X} Pr(X_j | C_i) Pr(C_i)
$$

found clusters become *sum node children* with parameters $w_i = |C_i|/|T|$.

Features X are clustered into independent components via a greedy procedure based on a **G Test** over pairs X_i, X_j:

$$
G(X_i, X_j) = 2 \sum_{x_i \sim X_i} \sum_{x_j \sim X_j} c(x_i, x_j) \cdot \log \frac{c(x_i, x_j) \cdot |T|}{c(x_i) c(x_j)}
$$

which are associated to **product node children**.

If $|T| < m$ consider features independent and create *leaves* by **smooth laplacian frequency estimation** (with parameter α).
LearnSPN (example)
LearnSPN (example)
LearnSPN (example)
A Co-Clustering Analogy

In the end, LearnSPN builds a network by partitioning the data matrix into blocks by highlighting local interactions.

One could discover both row and column interactions by the means of a co-clustering technique (co-clusters as blocks in the partitioning).

To preserve the decomposability and completeness of the resulting SPN:

- co-clusters shall be non overlapping
- the union of the co-clusters shall reconstruct the whole data matrix

To have a deep architecture one needs a hierarchy of co-clusters.

Such several out-of-the box co-clustering algorithms could be used to build SPNs... ...but rows are have not the same meaning of columns! (see caveat).
From a Hierarchical Co-Clustering to an SPN

Considering a co-cluster hierarchy as represented by two cluster hierarchies (on rows and columns), the construction uses the two hierarchies and the matrix decomposition intuition from LearnSPN.

Traverse the hierarchies top-down for at most k_{max} levels (to avoid overfitting) and:

- add a *sum node* over a split in the row hierarchy estimating the child weights as the proportions of instances in the split
- add a *product node* over a split in the column hierarchy
- if a split contains less than m instances add a product node over single column splits
- if a split contains only a feature, add a *leaf node* estimating the univariate distribution with a Laplacian smoothing
Hierarchies translation (example)
Hierarchies translation (example)
Hierarchies translation (example)
Hierarchies translation (example)
Co-clustering & SPNs: caveats

<table>
<thead>
<tr>
<th></th>
<th>X</th>
<th>Y</th>
<th>Z</th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

X Y Z W

X Y Z W

X Y Z W

X Y Z W
HiCC-SPN I

First co-clustering algorithm used in the experimentation: **HiCC Hierarchical Incremental Co-Clustering** [Ienco, Pensa, and Meo 2009]

- almost parameter-free (only the number of iterations to get initial clusters)
- optimizing an association measure, **Goodman-Kruskal's** τ divergence:

$$\tau_{C_R|c_C} = \frac{E_{C_R} - E_{C_R|c_C}}{E_{C_R}}$$

- builds an initial co-clustering then recursively splits each partition (yielding two hierarchies)
- using a Stochastic Local Search approach to find an optimal partitioning:
 - moving an element (row or column) from one cluster to another (cluster creation or deletion are allowed)
 - conditioning on the previous clustering on columns (and vice versa)
 - using restarts for hierarchy levels to differentiate the search
HiCC-SPN II

Adding a constraint to column splits to preserve independence by checking a \textit{conditional mutual information} criterion.

Given a row clustering \mathbf{R}, we allow feature x (column) to be moved from cluster C_i to C_j whether:

$$\frac{1}{|C_i|} \sum_{x_i \in C_i} I(x; x_i | \mathbf{R}) > \frac{1}{|C_j - 1|} \sum_{x \neq x_j \in C_j} I(x; x_j | \mathbf{R}).$$

$$I(x; y | \mathbf{R}) = H(x | \mathbf{R}) - H(x | y, \mathbf{R})$$

$$= \sum_{R \in \mathbf{R}} p(R) \sum_{x_i \sim x} \sum_{y_j \sim y} p(x_i, y_j | R) \log \frac{p(x_i, y_j | R)}{p(x_i | R)p(y_j | R)}.$$

where $p(R)$, the prior on the cluster R on the row partitioning \mathbf{R} is estimated as the cluster size proportion and $p(x_i, y_j | R)$, $p(x_i | R)$ and $p(y_j | R)$ are estimated as the frequencies of the values seen in R.
Experiments

Comparing LearnSPN ans HiCC-SPN in the *generative* framework of graphical models structure learning [Gens and Domingos 2013]:

- comparing the *average log-likelihood* on predicting instances from a test set

- 11 different datasets with binary features, standard in PGMs comparisons [Lowd and Davis 2010] [Haaren and Davis 2012]
 - ranging from classification, recommending, frequent pattern mining
 - 16 to 500 features, 1600 to 22000 instances, 0.01 to 0.5 density
 - Training 75% Validation 10% Test 15% (no cv)

- Model selection via *grid search* in this parameter space:
 - for LearnSPN: $\lambda \in \{0.2, 0.6, 0.8\}$, $\rho \in \{5, 10, 20\}$, $m \in \{1, 100, 400\}$, $\alpha \in \{0.01, 0.1, 1.0\}$
 - for HiCC-SPN: $k \in \{1 : 10\}$, $m \in \{1, 100, 400\}$, $\alpha \in \{0.001, 0.01, 0.1\}$
Experiment #1: results

| | $|X|$ | $|T_{tr}|$ | $|T_v|$ | $|T_{te}|$ | LearnSPN | HiCC-SPN |
|------|------|---------|--------|--------|---------------|---------------|
| NLTCS| 16 | 16181 | 2157 | 3236 | -6.111 ± 3.11 | -6.150 ± 3.11 |
| Plants| 69 | 17412 | 2321 | 3482 | -12.942 ± 8.52 | -13.762 ± 9.70 |
| Audio| 100 | 15000 | 2000 | 3000 | -40.465 ± 16.05 | -44.924 ± 18.47 |
| Jester| 100 | 9000 | 1000 | 4116 | -53.605 ± 13.29 | -56.460 ± 10.82 |
| Netflix| 100 | 15000 | 2000 | 3000 | -57.353 ± 6.29 | -62.730 ± 5.90 |
| Accidents| 111 | 12758 | 1700 | 2551 | -36.306 ± 6.00 | -42.790 ± 6.40 |
| Retail| 135 | 22041 | 2938 | 4408 | -11.053 ± 7.16 | -11.064 ± 7.27 |
| Pumsb-star| 163 | 12262 | 1635 | 2452 | -24.512 ± 8.07 | -37.854 ± 12.69 |
| DNA| 180 | 1600 | 400 | 1186 | -83.986 ± 11.30 | -99.273 ± 6.7 |
| Book| 500 | 8700 | 1159 | 1739 | -35.888 ± 40.94 | -36.939 ± 47.33 |
| EachMovie| 500 | 4525 | 1002 | 591 | -52.685 ± 53.78 | -55.411 ± 56.35 |
Conclusions and Further Works

Translating a co-cluster hierarchy into an SPN could be promising, the exact and tractable inference could be derived given a row and column partitioning...

...but not every co-clustering algorithm is directly usable, plus some representational issues have to be taken into account.

We are now investigating nested partition models [Rodriguez and Ghosh 2012] that allow for guillotine splits of the data matrix in order to better capture the underlying latent interactions and have deeper insights into SPN structure learning.
References

Discussion

References