Social things

Now we can

B. Apolloni, S. Bassis, GL Galliani, L. Ferrari, M. Gioia

Pisa 10/12/2014
Why now?

- Because Internet of Things connects things almost everywhere to constitute a network
- Because we trust on Social Network
- Because we are used to dialoguing with Internet
- Because things become more and more complex
- Because we expect optimal performances by things in a continuous updating process
What they aren’t

- Things shared by people (the socialism of things)
- Things connected to Internet to form an autonomous social network (SIoT)
- Things governed by owners community’s consensus (the I-like tyranny)
What they are

- Things
 - directly conducted by a social network of facts
 - thanks to a continuous optimization process
 - based on the learning of the users' needs and preferences
To be concrete:

social household appliances

You ask a task for your appliance

The network executes it through proper recipes
A social network of facts that physically manages all appliances parameters on my name

A four layers approach to implement an overall ecosystem

Transactions

Logic Layer
- Transport Layer
 - TCP
 - SSL/TLS
- Application Layer
 - MQTT
 - DATA

Physic Layer
- Eahouker

Eahouker

INSTRUCTIONS

TASK

RECIPE

FEEDBACKS

Wash, cook exactly as you want with the help of others

The remainder is in the cloud

Check the operations

Decide the parameters

This project has received funding from the European Union’s Seventh Framework Programme for research, technological development and demonstration under grant agreement no [317947]

Future Internet Research and Experimentation – FIRE
SandS – Social & Smart
http://www.sands-project.eu

PROJECT DATA
Start Date: 01 November 2012, Duration: 30M
Funding: 1.4M €

CONSORTIUM
- Unimi, ITALY
- Amis, SLOVENIA
- Arduino, SWITZERLAND
- Ntua, GREECE
- Cartif, SPAIN
- Gorenje, SLOVENIA
- Libelium, SPAIN
- Upv, SPAIN

Contact
Coordinator: Prof. Bruno Apolloni
Coordinator: SandS Project
Email: apolloni@di.unimi.it

Lead philosophy

- I don’t know how optimally operate my appliances, hence I ask the network.
- The network learns to optimally satisfy the user request on the basis of the informative triplet <task|recipe|evaluation>
- The social feature of the network stands in the members’ contribution in terms of profiles (of them and their appliances) and log of the above triplets.
A peculiar cognitive problem

- Recipes are sequences of parameter/value pairs.
- Tasks and evaluations are sets of both crisp and fuzzy variables.

but

- Fuzzy quantifiers do not refer to a specific metric space
The scientific challenge

- Consider Horn clauses such as
 - If less crusty and soggy then increase rising time
 - If very crusty and crisp then decrease rising time

- Involving:
 - Crisp variables: rising time
 - Fuzzy variables: crustiness, humidity
 - With fuzzy quantifiers: less, normal, very
Fuzzy Inference System

- The generic fuzzy rule system

\[
\text{if } x_1 \text{ is } A_{11} \text{ and } x_2 \text{ is } A_{12} \text{ and } \ldots \text{ and } x_n \text{ is } A_{1n} \text{ then } y \text{ is } B_1,
\]
\[
\text{if } x_1 \text{ is } A_{21} \text{ and } x_2 \text{ is } A_{22} \text{ and } \ldots \text{ and } x_n \text{ is } A_{2n} \text{ then } y \text{ is } B_2,
\]
\[
\vdots \quad \vdots \quad \vdots
\]
\[
\text{if } x_1 \text{ is } A_{k1} \text{ and } x_2 \text{ is } A_{k2} \text{ and } \ldots \text{ and } x_n \text{ is } A_{kn} \text{ then } y \text{ is } B_k,
\]

- The Sugeno variant

![Diagram of Sugeno variant](image)
With the further complication

Hence we must infer \(x \) as well

\[
\begin{align*}
\text{Input } x &= (x_1, x_2) \\
\text{Fuzzy set } A, B \\
\text{Weight } w_{ij} \\
\text{Normalized weight } \overline{w}_{ij} \\
\text{Sugeno functions } f_i \\
\text{Output } f \\
\end{align*}
\]

\[
f = \overline{w}_1 f_1(x, \alpha) + \overline{w}_2 f_2(x, \alpha)
\]
With the further complication

Rather we must infer from the evaluation g induced by f

Output f: rising time setting

Evaluation g: evaluation proposed on crustiness and humidity

It tastes somewhat custy for my teeth

$$f = \overline{w_1} f_1(x, \alpha) + \overline{w_2} f_2(x, \alpha)$$
1. A mixture of identification and control

Let’s recall **distal learning** by Rumelart and Jordan

Learn to compute the \(u \)

once you have learnt the PLANT *model* for whatever \(u \)
Computational issues

Active variables

- **Output** f: rising time \rightarrow positive continuous
- **Evaluation** g: judgement \rightarrow likert scale
- **Parameters** θ:
 - of a membership function
 - Vertex of triangular mf
 - Mean and std of asymmetric Gaussian mf
 - ...
 - of the Sugeno function
 - usually linear in the function
 - the input position within the membership function as well
 - to identify input coordinates
- **Error** E: e.g. g^2
2. Computational issues

Simply a richer derivative chain

Identification phase

\[E = (y - f)^2 \]
\[\frac{\partial E}{\partial f} = 2(y - f) \]
\[\frac{\partial f}{\partial \theta} = \text{canonical learning update rule} \]

Control phase

\[E = g^2 \]
\[\frac{\partial E}{\partial g} = g \]
\[\frac{\partial g}{\partial f} \approx \frac{g(t + 1) - g(t)}{f(t + 1) - f(f)} \]
\[\frac{\partial f}{\partial \theta} = \text{canonical learning update rule} \]

Legend

- **Output** \(f \): rising time
- **Evaluation** \(g \): judgement
- **Parameters** \(\theta \)
- **Error** \(E \): e.g. \(g^2 / (y - f)^2 \)
Two kinds of retropropagated signals

1. Task-related signals
 a. User judgment
 - On-line
 b. Target appliance parameter
 - off-line mode

2. Empirical evidence-related signals

The doble life of g_i:s: fuzzy sets as for antecedents, Likert metrics as for consequent
1. On-line learning

1. Prepare a new bread
2. Taste it
3. Evaluate the bread
4. On the basis of the evaluation, adjust the bread machine parameters through the neurofuzzy system

Neurofuzzy system

\[f(t) \rightleftharpoons g(t) \rightleftharpoons f(t+1) \rightleftharpoons g(t+1) \]
Early numerical results: case study

Membership function and coordinates inference

True mf (green triangles) vs. inferred mf (green triangles)

The coordinates tracks

Error computed on arbitrary target with non-linear Sugeno functions

Error course

Input trajectory (green arrow) and true input (red points)
Early experiments
a close case

Main features:
- 10 parameters to beautify the face
- 4 evaluation criteria (from -5 to +5)
- No analytical nor monotone relations between parameters

http://37.187.78.130/facedeform/
The identification phase

Relating the four judgements to two parameters
Training and generalization problems

- No training from judgements if no on-line learning
- No on-line learning if the training algorithm is not efficient.
The overall procedure in three steps

- Mining
- Fuzzy System Inference
- Reinforcement learning
Thank you for your attention

Say bye bye Bruno