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Abstract— In this paper, we present a preliminary conceptual
design for a robot long-term memory architecture based on the
notion of context. Contextual information is used to organize
the data flow between Working Memory (including Perceptual
Memory) and Long-Term Memory components. We discuss
the major influence of the notion of context within Episodic
Memory on Semantic and Procedural Memory, respectively.
We address how the occurrence of specific object-related
events in time impacts on the semantics associated with the
representation of those events and the subsequent use of those
objects through robot actions. The general architecture design
and its implementation are described. A preliminary validation
both in simulation and in a real-world environment is discussed.
Current work includes an implementation on a Baxter dual-
arm manipulator.

I. INTRODUCTION

Current research activities on robot cognitive architectures
mainly aim at providing holistic conceptual models in order
to enable robots to perform cognitive tasks [1], [2]. High-
level robot cognitive tasks tacitly assume the presence of
an underlying memory-based framework to ground percep-
tion, representation and retrieval, as well as action-oriented
behaviors. Although the most relevant characteristics of
human memory are far from being understood, the bunch
of available scientific knowledge constitutes a useful source
of inspiration to organize sensori-motor processes in robot
cognitive architectures. Although there is no general con-
sensus about how to design a memory-based framework,
memory models typically assume a multi-storage organiza-
tion, roughly dividing the whole memory space in two areas,
namely the Short-Term Memory (STM), which some authors
refer to as Working Memory (WM), and the Long-Term
Memory space (LTM), which is divided in sub-areas, i.e.,
the Episodic Memory (EM), the Procedural Memory (PM)
and the Semantic Memory (SM).

In the literature, attempts to characterize computational
models related to individual WM components [3], as well as
LTM components, e.g., EM [4], [5], [6], [7], [8], [9], [10] and
PM [11], have been pursued. Among the various approaches,
Stachowicz and Kruijff provide a thorough explanation of
both design requirements and formal concepts needed to
characterize EM and its storage structure [10]. They also
provide a brief review about EM in the ISAC framework
[5], the SOAR architecture [4], and EPIROME [7], just to
name a few. However, the focus of their work is on the
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notion of event, its properties, and its use in such processes
as event recognition. Despite their claim of having designed
an EM-like memory structure, it is noteworthy that they do
not exploit the notion of context, which is considered of the
utmost importance in [12], [13].

Given an analysis of the literature, two important topics
need to be addressed:

• On the one hand, no architectural model seems to
explicitly consider functional interconnections among
memory modules in a principled way.

• On the other hand, when adopting a holistic approach to
the definition of the architecture, a discrepancy between
the role of each module and its influence on other
modules can be frequently observed.

In particular, if we want to design a robot able to proac-
tively understand its environment and to engage humans in
interaction tasks, the need arises to characterize the informa-
tion flow among the various modules within a memory-based
cognitive architecture, specifically integrating the notion of
context. In humans, context processing is believed to occur
in the hippocampus [14]. In particular, it is referred to those
mechanisms used to differentiate a given situation from other
situations so that the correct behavioral or mnemonic output
can be retrieved. In order to achieve this capability also in
robots, this paper presents and discusses an interconnected,
memory-based robot architecture explicitly taking the notion
of context into account. Such an architecture is to be consid-
ered the foundation for the design of more complex cognitive
processes to occur in robots based on the developmental
paradigm.

The main contribution of this paper is twofold: (i) to
utilize the notion of context as the means to interconnect EM,
PM and SM; (ii) to analyze the impact of events on robot
behavior (as mediated by the overall architecture) when the
notion of context is considered, specifically when context-
based information retrieval is employed. It is expected that
the introduction of context-based information affects memory
retrieval processes, specifically as a means to mimic infor-
mation awareness mechanisms.

II. ARCHITECTURE AND EXPERIMENTAL SETTING

A. System Architecture

As previously anticipated, we consider a multi-storage
model where both Working Memory and Long-Term Mem-
ory are explicitly represented. WM is based on the Bad-
deley updated model [15], which includes the supervisor
Central Executive (CE) component, as well as the three
so-called slave components, namely the Phonological Loop



Fig. 1. The experimental scenario in simulation.

(PL), the Visuospatial Sketchpad (VSSP) and the Episodic
Buffer (EB). LTM consists of three basic components, i.e.,
Episodic Memory (EM), which keeps track of specific events
localized in time, Procedural Memory (PM), which encodes
elementary and composite motor skills, and Semantic Mem-
ory (SM), which deals with facts, their meaning and with
common sense, general knowledge.

As shown in Figure 1, we assume a human-robot inter-
action scenario where a human changes the number and the
configuration of objects located on a table in front of the
robot. In the current implementation, the robot is a passive
observer: it is capable of perceiving the environment by
means of visual information. From time to time, the human
can pose questions to the robot, which are related to what
it perceived during the interaction, such as How many red
boxes have been shown? or What is the location of the
blue box with respect to the red sphere? In order to answer
such questions, the robot must be able to recollect what it
previously perceived from its memory and (although such
aspect is subject to current work), provide a verbal account
of the memory recall process.

B. The Target Human-Robot Interaction Scenario

We set-up a scenario where a human operates on objects,
which are located on a table, in front of the robot. Objects
with different colors and shapes are inserted to and removed
from the scene. In this scenario, the robot is just a passive
observer. The robot perceives the scene using vision. A visual
stream is continuously acquired by the robot as long as
the human operates in the scene. Within the robot Field of
View (FoV), actions performed by the human are visually
spotted by the robot through saliency information. As the
visual stream is active, the system processes the input, infers
useful information about detected entities (e.g., color, shape,
position, size) using an image processing module, based on
gist [16] and saliency analysis [17], and consolidates them
into LTM. In the experiment, when the human replaces one
object with another one, a scene change occurs from the
robot perspective. As a consequence, a new memory element
(related to the new spotted entity) is consolidated inside
LTM. Actions performed by the human in the experiment are
aimed at addressing different memory modules. Specifically,

Fig. 2. The sequence of scenes as perceived by the robot: the raw feed on
the left hand side, the corresponding saliency map on the right hand side.

SM is involved whenever a novel entity is detected, EM
is releated to whole changes in the scene, whereas PM is
addressed during an event occurrence.

The experimental procedure consists of two phases,
namely knowledge acquisition and memory retrieval.

Knowledge acquisition. Inizially, two entities (namely a
red can and a green marker pen) are presented in the visible
part of the robot workspace (Figure 2 on top). The robot
acquires and consolidates the scene within LTM. Then, the
human presents a novel entity (i.e., a red marker pen, see
Figure 2 in the mid) to the robot. Afterwards, the human
replaces one entity (i.e., the red pen) with a novel one (i.e.,
a tennis ball, see Figure 3 on the bottom).

During each scene assessment step, the robot remembers
position, color and shape features for each entity.

Memory retrieval. Using a Graphical User Interface, the
human inserts cues, their value and several contexts, and
the system retrieves any available data based on both cues
and contextual information. In the performed experiment, the
following questions are posed to the robot.

1) Which entities do you know, which are red?
2) Which entities do you know, which are red, when three

entities were present in the scene?
3) Which green entity was the leftmost one, when three

entities were present in the scene?
4) Was the rightmost entity a ball, when three entities

were present in the scene?
5) Was the rightmost entity a ball, when a box was present

in the scene?
The questions can be formally translated into a set of

(cue, value) pairs – for instance, (color, red) – and contexts
– for instance (green, 3) – as shown in Table I. It is



noteworthy that we artificiously distinguish between the
Knowledge acquisition and the Memory retrieval process.
In principle, questions can be posed at any time during the
experiment, which reflects the constructivistic nature of the
developed robot knowledge.

Since no a priori knowledge is considered, LTM is initially
empty. As the robot experiences and consolidates new scenes,
the persistent nature of LTM allows it to progressively gather
knowledge from its personal experience. It is noteworthy that
no forgetting mechanism is employed, which means that the
knowledge acquired by the robot develops monotonically.

III. DISCUSSION

As a result of the experiment, four SM and three EM
episodes are maintained. EM and SM data correspond to
each captured scene and detected entity, respectively. Instead
of four (like in SM), only three EM memory elements are
consolidated. This is due to the fact that during step 5 in
Knowledge acquisition (Figure 2 on the top), the system
concludes that there are no differences if compared with the
scene consolidated in step 1. It is noteworthy that this case
is very unlikely to happen in real-world settings.

The first question is related to red entities. Red entities
that are known to the robot are two, namely a red can and a
red marker pen. The can is always present in the robot FoV,
whereas the marker pen has been detected in scene 2 (Figure
2 in the mid). The second is more specific, in that it requires
the robot to recall red objects detected only when three
different objects were present in the scene. Therefore, scene
1 is not considered. Consistently, two objects are recalled
from scene 2 and one object from scene 3. The third question
is related to the qualitative position of the green entity, but
only when two entities were present. Again, scene 1 is not
considered, whereas scene 2 and scene 3 are used to recall a
green marker pen. It is noteworthy that in scene 3, two green
entities are present, namely the marker and the ball, but the
marker is the leftmost one. As a result of the fourth question,
scene 3 is used to recall that a ball was the rightmost object.
Finally, a ball is never the rightmost entity, when scenes
include a box.

Table II shows a summary of these results. It is noteworthy
that some information is omitted, such as all the features of
the retrieved objects, e.g., color, shape, etc.

IV. CONCLUSIONS

In this paper, we present a conceptual design for a
memory-based architecture based on contextual information.

The framework is inspired by current studies in develop-
mental psychology, and adopts a biologically-inspired image
processing algorithm. Current work is aimed at implementing
the architecture on a Baxter dual-arm manipulator (with a
particular focus on sensori-motor processes, which are not
considered in this paper), as well as integrating a speech-
based human-robot interface.
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