
Towards a BDI Framework for Rational Behaviour
Programming in Autonomous Robots

Fabrizio Messina, Giuseppe Pappalardo, Corrado Santoro
University of Catania – Dept. of Mathematics and Computer Science

Viale Andrea Doria, 6 — 95125 - Catania, ITALY
EMail: {messina, pappalardo, santoro}@dmi.unict.it

I. BACKGROUND AND MOTIVATIONS

The design ofautonomous robotsposes a series of chal-
lenges which range from low-level control aspects to higher-
level behavioural concerns. While low-level issues (e.g. motion
control, arm control, servo driving) are dealt with using
traditional control systems techniques (e.g. PID controllers),
the design of an“intelligent behaviour” requires to take into
account proper AI techniques to let the robot to reach its goal.

With the advent of more sophisticated robots (e.g. hu-
manoids), also aimed at accomplishing assistance tasks at
home (i.e.home robots), the aspect of intelligence is particu-
larly stressed: indeed, these robots are expected to perform
tasks whose complexity is still increasing, while living in
a physical and human environment which is often highly
unpredictable and not fully observable. In order to face such
issues, the software designed to control the behaviour of
these kind of robots has to always consider the possible
occurrence of unexpected situation and then be able to adopt
countermeasures, in order to—sooner or later—achieve the
goals. In other words, the software should exhibit human-like
characteristics such asrationality anddeliberation abilities.

In such a context, classical programming models range
from AI techniques, such as logic-/knowledge-based systems,
to state machine-based abstraction, often employed in the
field of autonomous software agents. However, in all of these
models, the robot’s behaviour is expressed by a predictable
and prefixed sequence of actions which, even if it can feature
branches, it does not allow a clear emergence of the delibera-
tion aspect.

One of the most widely known rational models, in the field
of software intelligence agents, that presents a certain form of
deliberation is thebelief-desire-intention (BDI)[5]. Basically,
it is a model which tries to mimic human thinking: given an
objective to achieve, starting from the currentbeliefs (which
in turn are given by proper sensors), the set of the possible
actions to perform is determined (desiresor goals) and, on
this basis, anintention is selected to be executed.

One of the well-known implementations of the BDI model
is the abstract language AgentSpeak(L) [4] which has also
been implemented in a Java-based framework, called Jason [1].
However, while the AgentSpeak(L)/Jason proposal is sound,
it presents only a limited adherence to the BDI-model since
it lacks one of its basic aspect: thedeliberation; indeed, the
concept of goal in AgentSpeak(L) is quite similar to that

P ::= g
g ::= sg | cg
sg ::= (f, p, act)
f ::= functor → {true, false}
p ::= functor → N

act ::= functor → status
status ::= ACHIEV ED

| T FAIL
| P FAIL

cg ::= (rel, g set)
rel ::= ALL

| ALL SEQ
| AT LEAST (k)
| SEQ UNTIL (k ≥ 1)

g set ::= {g1, . . . , gn} (n > 1)

Fig. 1. Basic GOLEM Syntax

of a “procedure” (sequence of statements) and the ability of
selecting the proper intention to executed is not present atall.

II. T HE GOLEM SYSTEM

In this context, with the aim of providing a way to easily
program the behaviour of rational autonomous robots, the
authors designed an abstract framework, called GOLEM [2],
[3], whose central aspect is the concept ofgoal together with
the opportunity to achieve it in a certain time instant. A
GOLEM program is an unordered set ofgoals, which may
also have dependencies to one another; executing/achieving
the goals of the set implies to achieve the overall objectivefor
which the robot has been designed.

In order to ensure the deliberation ability, the order of
execution of GOLEM goals is not fixed at design stage but
decided at run-time on the basis of anaware choicemade by
the robot itself. A scheduler is provided in a GOLEM system,
which governs the execution of goals and their selection policy;
the latter is provided, in a GOLEM program, by the designer
itself, who has the responsibility of implementing not only
the code of the goals but also the algorithm to perform their
run-time selection.

Figure 1 reports the basic elements of GOLEM and its
abstract syntax. The main entity of a GOLEM program is the
goal, which may besimpleor composite.

A goal is simple, sg, if it requires no specific further deci-
sion on the actions to be undertaken. It is represented with the

tuple (f, p, act), where:f is the feasibility function, a functor
returning a boolean value stating whether the goal could be
feasible or not1; p is the opportunity evaluator, a functor
returning a numerical value stating theimportance2 of the goal
w.r.t. other goals; andact is the goal action, a computation
made of a sequence of statements aimed at achieving the goal
and that do not require a particular “intelligent choice”. Agoal
action terminates with a return value indicating asuccessor
a failure; in the latter case, the failure may bepermanent—
i.e. there are no condition which can lead to a success—or
temporarily—i.e. the impeding condition could disappear in
the near future; in this last case, the GOLEM system takes care
of re-scheduling (at the next opportunity) the goal in orderto
make further trials.

A composite goal,cg, is instead represented as a pair
(rel, g set) comprising aset of sub-goalsg set and a re-
lationship conditionrel; each sub-goal may be, in turn, both
simple and composite while the relationship can be chosen
among one of the following:

• ALL. The goal succeeds whenall of its sub-goals are
achieved but the order of achievement does not matter.

• ALL SEQ. The goal succeeds whenall of its sub-
goals are achieved but the achievement must be per-
formed in strict sequence.

• AT LEAST(k). The goal succeeds whenat least k
of its sub-goals (withk specified) are achieved (no
constraints on the order of achievement).

• SEQ UNTIL. The goal succeeds when (as soon as)
any sub-goalis achieved; the setg set is orderedand
sub-goal achievement is tried in strict sequence.

Algorithm 1 Sketch of GOLEM Machine Execution Loop
1: procedure GAM(P:goal)
2: while ¬ACHIEVED(P)∧¬PERM FAILED(P) do
3: feasibles← {g ∈ P : IS FEASIBLE(g)}
4: candidates← {g ∈ feasibles :
5: max OPPORTUNITY (g)}
6: selected←ONE OF(candidates)
7: EXEC(selected)
8: end while
9: end procedure

A developer has to design the behaviour of its robot by
identifying the relevant goals, with the proper relationships,
and thus implementing the program code for the feasibility
functions, opportunity functions and goal actions. The execu-
tion of the program is then governed by a GOLEM machine
whose behaviour is described in Algorithm 1. As the algorithm
suggests, the choice of the goal to execute is performed by
analysing goal relationships and the return values of both
feasibility and opportunity functions; the execution sequence
is thus highly dynamic and chosen by the robot itself on the
basis of current the state of the environment (which could make
some goal infeasible) and the decision to make a certain goal,
in a given time instant, more important than another one.

1A goal is infeasible if there are no condition (in the environment or in the
robot) to achieve it with success.

2i.e. priority

III. T OWARDS GOLEM-BDI

The GOLEM framework described so far has been imple-
mented by the authors in the form of software libraries for the
programming languages Erlang and C. The C implementation
is designed to work in microcontrollers in bare-metal, thus
without the support of an operating system. Such implemen-
tations have been used to program some autonomous robots
developed in author’s laboratory.

Tests performed have proved the effectiveness of the
approach highlighting, in particular, the ability to (i) au-
tonomously choose the strategy to follow and (ii) face failures
thus adopting countermeasures. However, despite the cited
advantages, our tests showed that GOLEM lacks some features
which, instead, could help a lot the design of a rational be-
haviour, i.e. (i) an adequate representation of the environment
and robot’s state, (ii) the storage of past experiences in order to
reuse them in future, or (iii) a form offorward reasoningwhich
could help the robot to infer additional information usefulto
perform a more aware goal selection.

Such aspects are proper of AI system, while GOLEM
has been initially designed as a dynamic scheduler of goals,
with the aim of having a light system in both the model and
the implementation3. But the basic behaviour of a GOLEM
system, which lets the main actor to choose itself the strategy
to adopt, is quite similar that of a BDI system.

Given these premises, a natural evolution of GOLEM is
to make it areal BDI system, by properly extending it, but
without forgetting the initial requirement of having an “aslight
as possible” environment.

Making GOLEM BDI-compliant requires to clearly map
GOLEM concepts to the basic entities of the BDI model
(beliefs, desires and intentions), but ensuring to keep the
deliberation feature which, in GOLEM, is paramount.

A first thing to be noticed is that the concept of BDIdesire,
which can be expressed as “the things which an agent/robot
would like to do”, is quite similar to a GOLEMgoal.

The concept ofintention is instead something like “given
a certain desire, an intention is what the agent/robot intend to
do in order to meet that desire”. According to the BDI model,
intentions are selected from desires on the basis of the beliefs,
i.e. on the basis of reasoning aspects and the knowledge the
agent/robot has on itself and the environment. By making a
comparison with a GOLEM system, an intention is indeed
a candidate goalfor execution and thus one element of the
set computed at line 4 of Algorithm 1. It should be also
noticed that, according to the BDI model, intentions represent
a possible set of optionsto fulfill a certain desire; one of
such options is then selected to be executed. This behaviouris
similar to that of goal selection in line 6 of Algorithm 1, butis
also well represented by a composite goal withAT LEAST(1)
or SEQ UNTIL relationships. Indeed, the former relationship
models the case in which several sub-goals arealternative
optionsto achieve a certain main goal: one option (intention)
may be selected to make the goal (desire) successful, but, ifit
fails, other alternatives are still possible. The latter relationship

3One objective were to have a small-sized system running on microcon-
trollers.

P ::= (mg,mp)
mg ::= g
mp ::= {lf1, . . . , lfn}
g ::= sg | cg
sg ::= (f, p, act)
f ::= bel1 “,” . . . “,” beln.
p ::= functor → N

act ::= a1 “,” . . . “,” an
a ::= A(t1, . . . , tn) | “+” bel | “-” bel | st
st ::= ACHIEVED(sg) | T_FAIL(sg)

| P_FAIL(sg)
cg ::= (rel, g set)
rel ::= ALL | ALL_SEQ | AT_LEAST(k)

| SEQ_UNTIL
g set ::= {g1, . . . , gn}

lf ::= bel “:-” bel1 “,” . . . “,” beln.
bel ::= B(t1, . . . , tn)

Fig. 2. Basic Syntax of GOLEM-BDI

models a set of alternative options as well, but adds anorder
of precedence/preference: first try sub-goal 1, but if it fails, try
sub-goal 2, and so on.

The last concept of the BDI model is thebelief, which is
used to model the knowledge of the agent/robot. A similar
concept is however not present in GOLEM but is highly
demanded in order to make the framework BDI-compliant.
Beliefs not only must be properly represented, but also be
manipulated by GOLEM goals in order to (i) perform checks
on certain knowledge; (ii) add or remove knowledge on the
basis of the evolution of the program; (iii) infer new knowledge
by using reasoning.

While there are many alternatives to model beliefs, the
most widely accepted approach implies the use of logic
programming, and this is what we used to inGOLEM-BDI,
the BDI-compliant extension of GOLEM.

GOLEM-BDI includes the goal model of GOLEM adding
the expression and manipulation of beliefs. As it is sketched
in Figure 2, which reports the basic syntax of GOLEM-
BDI, a programP is composed by amain goal (mg) and a
set of logic predicates(mg). The latter is a set of Prolog-
style first-order logic predicates (lf) each one representing
an implication and thus used to perform reasoning on the
knowledge. Each predicate is expressed using one or more
beliefs (bel) which are represented as atomic formulae with
one or more variables/parameters.

Beliefs, which at run-time are supposed to be stored in a
knowledge base, are manipulated as follows:

• Through pieces of code which poll the environment
or robot state by using propersensors4;

• As a result of a reasoning process, according to a
Prolog-style predicate (lf);

• By using an explicitassertor retract command in the
sequence of statements placed in the goal’s action part.

4Such a piece of code is intended to beoutsidethe context of a GOLEM
program.

As for goal structure, both simple and composite goals are
expressed as in GOLEM provided the following modifications.

First of all the feasibilityf function uses a first-order logic
predicate on the beliefs present in knowledge base. A goal is
thus feasible if the beliefs expressed in the predicate, which
may also include constraint on parameters, are present in the
knowledge base.

Secondly, the actionact, which in GOLEM is not specified,
here is expressed as a list of commands which can be:

• executing anatomic action, that is an explicit com-
mand to e.g. drive a robot’s actuator (robot motion,
arm movement, etc.);

• asserting or retracting a certain belief, in order to
update the knowledge according to the evolution of
the robot state;

• specifying the outcome of the goal execution by using
one of the special beliefs inst, i.e. ACHIEVED,
T FAIL or P FAIL.

Obviously, the GOLEM-BDI system described here is an
abstract framework. To make it concrete, an implementation
is needed in a proper programming language. In this sense,
while a logic-based paradigm seems the most appropriate, such
a choice is not mandatory and any other approach can be
chosen, given that the semantics of the program constructs
and execution is respected. This implementation activity will
be performed in future work.

IV. CONCLUSIONS ANDWORKSHOPPROPOSAL

This aim of this paper is the description of GOLEM-BDI,
a belief-desire-intentionabstract framework for autonomous
systems. The framework derives from GOLEM, which is
goal-based framework specifically designed by the authors to
program autonomous robots. GOLEM is extended in order
to include the basic concepts of the BDI model, and, more
precisely, thebelief abstraction, which is then properly inter-
faced to all of the GOLEM mechanisms for goal selection and
execution. While GOLEM has been successfully implemented
and tested on some robots, GOLEM-BDI is currently under
developed and it will be subject of future work.

REFERENCES

[1] R. H. Bordini, J. F. Ḧubner, and M. Wooldridge,Programming multi-
agent systems in AgentSpeak using Jason. Wiley, 2007.

[2] F. Messina, G. Pappalardo, and C. Santoro, “A Goal-centric Framework
for Behaviour Programming in Autonomous Robotic Systems,” in10th

IEEE/ASME International Conference on Mechatronic and Embedded
Systems and Applications - MESA2014. IEEE, 2014.

[3] ——, “Designing Autonomous Robots Using GOLEM,” inXV Workshop
“Dagli Oggetti agli Agenti” - WOA2014. CEUR-WS, 2014.

[4] A. Rao, “AgentSpeak (L): BDI agents speak out in a logicalcomputable
language,”Lecture Notes in Computer Science, vol. 1038, pp. 42–55,
1996.

[5] A. Rao and M. Georgeff, “BDI agents: From theory to practice,” in
Proceedings of ICMAS. San Francisco, CA, 1995, pp. 312–319.

